LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2013

MT 3875 - MATHEMATICAL FINANCE MODELS

	Date: 15/11/2013 Dept. No. Time: 9:00 - 12:00		Max. : 100 Marks		
4:	Answer ALL Questions. All questions carry equal marks.				
١.	(a) (i) Define i) Geometric Brownian motion process. ii) Brownian motion process. (5) OR				
	(ii) If an amount is deposited at some int amount will be doubled.	erest rate r compounded a	nnually, in how many years the (5)		
	(b) (i) Obtain Geometric Brownian motion p OR	models. (15)			
(ii) If Adam borrow Rs.1000 for one year at an interest rate of 8% per year, Calculate the i paid by him i) annually ii) half yearly iii) Quarterly iv) monthly, Which of the term per more profitable for him.					
	(iii) Find the rate of return of a two year return at the end of the first year of 5 500, c) 700.		1 0		
2.	assumed to be either 200 or 50. In for purchasing the stock.				
	OI (ii) Prove that one should never		style call antion before its		
	expiration time t.	excicise an American	(5)		
	(b) (i) State and prove Arbitrage theorem.	8	(15)		
	(ii) For two investments, first of which costs the fixed amount C_1 and the second fixed price				
	amount C_2 . If the present value from the first investment is always identical to that of the				
	second investment, then show that	either $C_1 = C_2$ or there is an	arbitrage. (15)		
	(a) (i) Obtain E[IS(t)] used in the Black- Sch				
	(ii) Prove that the dividend for each equal to a fixed fraction f of the		id continuously in time at a rate (5)		

(b) (i) The price of a certain security follows a geometric Brownian motion with $\mu = .05$ and

arbitrage cost of a call option that expires in 3 months and has exercise price 100.

 $\sigma = 0.3$. The present value of the security is 95. If the interest rate is 4%, find the no

(ii) Show that $C(s,t,k,\sigma,r)$ is decreasing in k . OR	(10+5)		
(iii) Briefly explain the Valuing investments by expected utility.	(15)		
	, ,		
4. (a) (i) Derive the mean and variance of lognormal distribution. OR	(5)		
(ii) Derive the value of β_i in capital assets pricing model.	(5)		
(b) (i) Explain the procedure of estimating σ when i) Closing prices are given. ii) Closing and opening prices are given. iii) Closing, opening, high, low data values are given. (15)			
OR			
(ii) Given three investment projects with the following return functions			
i) $f_1(x) = \frac{10x}{1+x}$, $x = 0, 1,$ ii) $f_2(x) = \sqrt{x}$, $x = 0, 1,$ iii) $f_3(x) = 10(1 - e^{-x})$, $x = 0, 1,$			
maximum return for 5 investments?	(15)		
5. (a) (i) Explain value at risk (VAR). OR	(5)		
(ii) Explain barrier call option with a specified strike price.	(5)		
 (b) (i) If one has to invest 100 in 2 securities whose rates of return have the values and standard deviations r₁ = 0.15, v₁ = 0.2, r₂ = 0.18, v₂ = 0.25 and cor between returns is ρ = -0.4. Find the optimal portfolio when using v(x) = expected optimal utility. OR (ii) Derive the pricing Exotic options by simulation. 	relation co efficient		
